楼主: a智多星
609 0

有向无环图-双支持向量机的多类分类方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-9 23:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对多分类支持向量机算法中的低效问题和样本不平衡问题,提出一种有向无环图一双支持向量机DAG-TWSVM(directed acyclic graph and twin support vector machine)的多分类方法。该算法综合了双支持向量机和有向无环图支持向量机的优势,使其不仅能够得到较好的分类精度,同时还能够大大缩减训练时间。在处理较大规模数据集多分类问题时,其时间优势更为突出。采用ucI(University of California Irvine)机器学习数据库和Statlog数据库对该算法进行验证,实验结果表明,有向无环图一双支持向量机多分类方法在训练时间上较其他多分类支持向量机大大缩短,且在样本不平衡时的分类性能要优于其他多分类支持向量机,同时解决了经典支持向量机一对一多分类算法可能存在的不可分区域问题。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 california University Universit 机器学习 有向无环图 双支持向量机 多类分类

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-5 18:20