楼主: AIworld
826 0

基于可靠性的正则化加权软k-均值的子空间聚类 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-10 07:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:子空间聚类已经广泛应用于多个涉及高维数据聚类应用领域,受到机器学习研究者的广泛关注.子空间聚类方法是一种使用特征选择的聚类分析技术,通过选择重要特征子集实现对高维空间的低维表示,在实际应用中能够取得更好的性能,成为流行的高维数据聚类方法.与硬聚类方法相比,软聚类能够给出复杂数据更有意义的划分.扩展k-均值聚类并提出基于可靠性的正则化加权软k-均值新的子空间聚类方法(Reliability-based regularized weighted soft k-means clustering algorithm,RRWSKM),该方法能够计算每个特征对每个聚类的贡献度,从而找到与不同聚类相关的重要特征子集.另外,该方法能够通过调整模型参数准确地辨识数据模式,具有良好的聚类性能.该方法把维度加权熵和划分熵作为正则化项引入到目标函数,避免过拟合问题同时使更多的特征参与辨识聚类.为了提高算法的鲁棒性,使用可靠性测度获得特征权重初始值,提高算法的可靠性和性能.考虑到该算法是非凸优化问题,使用迭代优化方法得到优化问题的最优解.使用多个实际数据集对本文算法进行仿真验证,结果表明,与其他子空间聚类算法相比,该算法能够有效发现高维数据的低维表示,具有良好的聚类性能,适合高维数据的聚类.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:可靠性 正则化 reliability Clustering Algorithm 软k-均值聚类 聚类相关维度权重 最大熵 高维数据 可靠性测度

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-5 23:39