楼主: AIworld
578 0

基于流形正则化的支持向量机文本分类 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-15 20:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机(Support Vector Machine,SVM)是一种Vapnik等在统计学理论的基础上发展起来的可训练机器学习的方法。它主要针对小样本的机器学习,具有泛化性能好、高维操作方便、适应性强、全局优化、训练时间短、理论完备等特点,因此得到了日益广泛的应用和研究。本文将半监督学习算法应用到基于支持向量机的文本分类技术弘。中,提出了一组基于几何正则化方式的学习算法。虽然这种新型算法适用于无监督到完全监督的整个范围,本文专注于半监督学习算法方面的研究。之后,本文讨论了新型方法在SVM算法上的扩展。实验数据表明,这种新型算法可以有效的使用未标记数据。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 正则化 向量机 Support machine 半监督学习 正则化 核方法 流形学习 无标签数据

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 08:20