楼主: 论文库
760 0

基于人工神经网络的电力负荷坏数据辨识与调整 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-2-16 10:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:电力负荷坏数据辨识应充分考虑负荷曲线本身的特征。先用Kohonen网对日负荷曲线进行聚类,产生各类的特征曲线;然后用特征曲线及由此产生的含有坏数据的曲线形成的样本集对BP网进行训练,利用BP网的泛化能力,使之具备对本类曲线进行坏数据精确定位的能力;最后利用特征曲线进行坏数据的调整。该方法能够做到离线训练,在线辨识,实例分析取得了良好的效果。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:人工神经网络 神经网络 人工神经 神经网 学术交流 电力负荷 坏数据辨识 人工神经网络 人工智能

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 14:21