楼主: AIworld
633 0

基于手机加速度器和螺旋仪的室内运动状态分类 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-17 08:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:实现了使用安卓手机内置的传感器-加速度器和螺旋仪对使用者的运动数据进行收集,并进行特征选择,通过机器学习的算法进行室内运动状态的分类。分类的运动状态有静止、走路、坐下、上楼、下楼、电梯上行、电梯下行、摔倒、帕金森抖动。使用了监督式学习算法:决策树、随机森林、支持向量机、神经网络、朴素贝叶斯、KNN、逻辑回归等算法,并且进行分类效果对比。实验结果表明,加速度器和螺旋仪一起收集数据比只用单个最后分类精度要高。对加速度器和螺旋仪收集数据进行特征选择完后的原始数据,决策树算法得到了97.54%的分类精确率。而原始数据取完中位数后精度下降了。根据用户的运动状态,制定规则进行奖励和惩罚。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:加速度 支持向量机 朴素贝叶斯 收集数据 特征选择 加速度器 螺旋仪 机器学习 特征选择 激励规则

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 00:25