楼主: AIworld
636 0

基于主成分分析的SMO文本分类 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-18 03:39:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:利用SMO进行文本分类的核心问题是特征的选择问题,特征选择涉及到哪些特征和选择的特征维度问题。针对以上问题,介绍一种基于主成分分析和信息增益相结合的数据集样本降维的方法,并在此基础上对序贯最小优化算法进行改进,提出降维序贯最小优化(P-SOM)算法。P-SMO算法去掉了冗余维。实验结果证明,该方法提高SMO算法的性能,缩短支持向量机的训练时间,提高支持向量机的分类精度。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:主成分分析 主成分 SMO 支持向量机 大家共享 机器学习 支持向量机 序贯最小化 主成分分析 降维

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 11:23