楼主: DL-er
545 0

定量细胞分析中特征向量降维方法研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-2-18 23:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了提高定量细胞分析中细胞核类型识别的准确性、鲁棒性和效率,提出了一种细胞核特征向量降维方法.该方法首先采用基于统计的F-score算法对细胞核特征参数进行初步筛选,剔除F-score明显过低的细胞核特征参数;然后利用随机森林算法计算特征参数对于分类提供的信息量,并以此为依据对特征参数排序;最后在不同数量特征参数情况下进行支持向量机分类实验,得出最终降维结果.实验结果表明:与降维前相比,细胞核的识别时间可节约50%,识别准确性由91.32%提高到98.67%.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:方法研究 特征向量 score 支持向量机 SCOR 模式识别 机器学习 定量细胞学 支持向量机 特征向量降维

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 13:39