楼主: igs816
3333 32

[书籍介绍] R Data Mining [推广有奖]

已卖:261246份资源

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1762873 个
通用积分
20526.5467
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485149 点
帖子
5457
精华
52
在线时间
3910 小时
注册时间
2007-8-6
最后登录
2026-1-1

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2018-3-28 14:42:18 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
LHFSvq7Uqdk2bE3voD1vVhEyeHfuYYSJ.jpg
English | Nov. 29, 2017 | ISBN: 1787124460 | 442 Pages | PDF
Mine valuable insights from your data using popular tools and techniques in R
About This Book
Understand the basics of data mining and why R is a perfect tool for it.
Manipulate your data using popular R packages such as ggplot2, dplyr, and so on to gather valuable business insights from it.
Apply effective data mining models to perform regression and classification tasks.

Who This Book Is For
If you are a budding data scientist, or a data analyst with a basic knowledge of R, and want to get into the intricacies of data mining in a practical manner, this is the book for you. No previous experience of data mining is required.

What You Will Learn
Master relevant packages such as dplyr, ggplot2 and so on for data mining
Learn how to effectively organize a data mining project through the CRISP-DM methodology
Implement data cleaning and validation tasks to get your data ready for data mining activities
Execute Exploratory Data Analysis both the numerical and the graphical way
Develop simple and multiple regression models along with logistic regression
Apply basic ensemble learning techniques to join together results from different data mining models
Perform text mining analysis from unstructured pdf files and textual data
Produce reports to effectively communicate objectives, methods, and insights of your analyses

In Detail
R is widely used to leverage data mining techniques across many different industries, including finance, medicine, scientific research, and more. This book will empower you to produce and present impressive analyses from data, by selecting                                                                                                                                                                                                                                                                                                                                                                                                                                                                              and implementing the appropriate data mining techniques in R.

It will let you gain these powerful skills while immersing in a one of a kind data mining crime case, where you will be requested to help resolving a real fraud case affecting a commercial company, by the mean of both basic and advanced data mining techniques.

While moving along the plot of the story you will effectively learn and practice on real data the various R packages commonly employed for this kind of tasks. You will also get the chance of apply some of the most popular and effective data mining models and algos, from the basic multiple linear regression to the most advanced Support Vector Machines. Unlike other data mining learning instruments, this book will effectively expose you the theory behind these models, their relevant assumptions and when they can be applied to the data you are facing. By the end of the book you will hold a new and powerful toolbox of instruments, exactly knowing when and how to employ each of them to solve your data mining problems and get the most out of your data.

Finally, to let you maximize the exposure to the concepts described and the learning process, the book comes packed with a reproducible bundle of commented R scripts and a practical set of data mining models cheat sheets.

Style and approach
This book takes a practical, step-by-step approach to explain the concepts of data mining. Practical use-cases involving real-world datasets are used throughout the book to clearly explain theoretical concepts.

本帖隐藏的内容

R Data Mining - Implement data mining techniques through practical use cases and.pdf (15.16 MB, 需要: 10 个论坛币)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Data Mining Data Mini ning Min

已有 1 人评分论坛币 热心指数 收起 理由
cheetahfly + 20 + 1 奖励积极上传好的资料

总评分: 论坛币 + 20  热心指数 + 1   查看全部评分

沙发
Da甜甜(真实交易用户) 发表于 2018-3-28 14:44:59
R Data Mining 谢谢楼主的好书分享

藤椅
20115326(真实交易用户) 学生认证  发表于 2018-3-28 14:48:50
好书,学习了

板凳
So橘子(真实交易用户) 发表于 2018-3-28 14:59:00
学习学习

报纸
铿锵绿色(真实交易用户) 发表于 2018-3-28 16:15:02
xie xie

地板
xfdexf(真实交易用户) 发表于 2018-3-28 17:18:45

学习学习

7
军旗飞扬(未真实交易用户) 在职认证  发表于 2018-3-28 17:34:21
谢谢分享

8
narcissism0923(真实交易用户) 发表于 2018-3-28 18:40:43

9
ybli(真实交易用户) 发表于 2018-3-28 19:36:49
R Data Mining

10
Edwardu(真实交易用户) 发表于 2018-3-28 20:47:09
interesting

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-2 08:44