楼主: leosong
310 1

[其他] Stationary Sequences and random fields [分享]

讲师

67%

还不是VIP/贵宾

-

威望
0
论坛币
10256 个
通用积分
19.0660
学术水平
59 点
热心指数
39 点
信用等级
33 点
经验
933 点
帖子
308
精华
1
在线时间
373 小时
注册时间
2005-6-14
最后登录
2019-9-1

leosong 发表于 2018-9-30 01:24:04 |显示全部楼层
另一本研究稳定数据流的书。研读的目的是如何对待不稳定数据流。
Chapter I
Stationary Processes

Table of Contents

9

1. General Discussion ................................... . . . . . . . . 12
2. Positive Definite Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Fourier Representation of a Weakly Stationary Process. . . . . . . . . . . 15
Problems ................................................... 22
Notes ...................................................... 24


Chapter II
Prediction and Moments
1. Prediction .................................................. 30
2. Moments and Cumulants ..................................... 33
3. Autoregressive and Moving Average Processes. . . . . . . . . . . . . . . . . . . 37
4. Non-Gaussian Linear Processes ................................ 46
5. The Kalman-Eucy Filter ..................................... 48
Problerlls ................................................... 50
Notes ...................................................... 51


Chapter III
Quadratic Forms, Limit Theorems and Mixing Conditions
1. Introduction ................................................ 54
2. Quadratic Forms ............................................ 54
3. A Limit Theorem ............................................ 62
4. Summability of Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5. Long-range Dependence....... .... .... ....... ..... ... ..... ... 71
6. Strong Mixing and Random Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Problems ................................................... 78
Notes ...................................................... 79


Chapter IV
Estimation of Parameters of Finite Parameter Models
1. Maximum Likelihood Estimates ............................... 84
2. The Newton-Raphson Procedure and Gaussian ARMA Schemes. . .. 92
3. Asymptotic Properties of Some Finite Parameter Estimates ....... 101
4. Sample Computations Using Monte Carlo Simulation ............. 111
5. Estimating the Order of a Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6. Finite Parameter Stationary Random Fields .................... 115
Problems ................................................... 120


Chapter V
Spectral Density Estimates
1. The Periodogram ............................................ 126
2. Bias and Variance of Spectral Density Estimates ................ 132
3. Asymptotic Distribution of Spectral Density Estimates ........... 138
4. Prewhitening and Tapering ................................... 143
5. Spectral Density Estimates Using Blocks ....................... 144
6. A Lower Bound for the Precision of Spectral Density Estimates ... 146
7. Turbulence and the Kolmogorov Spectrum . . . . . . . . . . . . . . . . . . . . .. 152
8. Spectral Density Estimates for Random Fields .................. 155
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157
Notes.... ... ...... ...... .................. ......... .. ...... 159


Chapter VI
Cumulant Spectral Estimates
1. Introduction ................................................ 164
2. The Discrete Fourier Transform and Fast Fourier Transform. .. . .. 164
3. Vector-Valued Processes ...................................... 166
4. Smoothed Periodograms ...................................... 175
5. Aliasing and Discretely Sampled Time Series .................... 182
Notes ...................................................... 190


Chapter VII
Density and Regression Estimates
1. Introduction. The Case of Independent Observations ............. 192
2. Density and Regression Estimates for Stationary Sequences.. . . . .. 196
Notes ...................................................... 203

Chapter VIII
Non-Gaussian Linear Processes
1. Estimates of Phase, Coefficients, and Deconvolution for Non-Gaussian
Linear Processes ............................................. 206
2. Random Fields .............................................. 221
3. Non-Gaussian Linear Random Fields. . . . . . . . . . . . . . . . . . . . . . . . . .. 234
Notes ...................................................... 237
Appendix
1. Monotone Functions and Measures ............................. 240
2. Hilbert Space ............................................... 242
3. Banach Space ............................................... 244
4. Banach Algebras and Homomorphisms ......................... 245

关键词:stationary Sequences sequence station random

Rosenblatt1985_Stationary_Sequences_and random fields-book Copy.pdf

10.16 MB

售价: 10 个论坛币

stata SPSS
wangyong8935 发表于 2018-9-30 05:58:52 来自手机 |显示全部楼层
thank you
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 我要注册

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2019-11-18 05:36