谢谢您的解答,我试了一下命令,但是结果和我前面的一样。没改变什么呢。
. qui xsmle chzs lncfsp hlw lnczsr lnfmzl lncsfj lnwztzze lnjyzc lnkxjszc lnzhong, emat(ww1) model(sem)
> nolog re
.
. qui xsmle chzs lncfsp hlw lnczsr lnfmzl lncsfj lnwztzze lnjyzc lnkxjszc lnzhong, emat(ww1) model(sem)
> nolog fe hausman
.
. hausman fe re
---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| fe re Difference S.E.
-------------+----------------------------------------------------------------
lncfsp | -19.37703 -14.86388 -4.513152 .
hlw | .5255573 1.431621 -.9060634 .
lnczsr | 12.18053 13.93069 -1.750158 .
lnfmzl | 2.149375 2.745353 -.5959786 .
lncsfj | -4.960823 -4.204073 -.7567499 .
lnwztzze | 2.75794 3.394447 -.6365069 .
lnjyzc | -2.023616 -11.65596 9.632345 .
lnkxjszc | 3.235641 3.937528 -.7018867 .
lnzhong | -12.96071 18.25933 -31.22004 6.335719
------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xsmle
B = inconsistent under Ha, efficient under Ho; obtained from xsmle
Test: Ho: difference in coefficients not systematic
chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= -13.05 chi2<0 ==> model fitted on these
data fails to meet the asymptotic
assumptions of the Hausman test;
see suest for a generalized test
哪怕是加上保存est sto re /fe 的命令也是一样的结果。请问还有其他的办法吗


雷达卡


京公网安备 11010802022788号







