W is a Q brownian motion if and only if Ma,t=exp(-a*Wt-1/2*a^2*t) is a Q martingale with Ma,0=1 ;a belongs to R
只要证明必要性就OK了
|
楼主: warren_619
|
4248
24
[学科前沿] 寻牛人解题!! |

|
已卖:495份资源 硕士生 0%
-
|
回帖推荐actually there is another problem, a cannot be any real number, if a = 0, it's trivial, W is not necessarily a Brownian motion
now if a != 0 so the problem is nontrivial, if W is a levy process with triplet (sigma^2, nu, gamma), then M(a,t) is a martingale iff
gamma + (sigma^2 - 1) /2 + \int (e^z - 1 - z 1_(|z|
| ||
|
|
| ||
| ||
|
welcome to
http://stochasticquant.com/ |
||
| ||
|
welcome to
http://stochasticquant.com/ |
||
加好友,备注jr京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明


