2020年北京大学数学分析考研第七题
$f(x,y)$在平面上有二阶的连续偏导数,且满足$\frac{\partial^{2}f}{\partial x^{2}}+\frac{\partial^{2}f}{\partial y^{2}}=x^{2}+y^{2}$.$f(0,0)=0$.
S是以原点为圆心,半径为r的圆的圆周,试求$f(x,y)$在圆周上的平均值,即$\frac{1}{2\pi r}\oint_{s} f(x,y)\,ds$
解答一:
设
\[I(r)=\frac{1}{2\pi
r}\oint_{s}
f(x,y)ds=\frac{1}{2\pi}\int_0^{2\pi}f(r\cos\theta,r\sin\theta)d\theta.\]
从而
\[\begin{array}{rl} I'(r)&=\frac{1}{2\pi}\int_0^{2\pi}(f_x(r\cos\theta,r\sin\theta)\cos\theta
+f_y(r\cos\theta,r\cos\theta)\sin\theta)d\theta\\
&=\frac{1}{2\pi
r^2}\oint_{x^2+y^2=r^2}(f_x(x,y)x+f_y(x,y)y)ds\\
&=\frac{1}{2\pi r}\oint_{x^2+y^2=r^2}\frac{\partial f}{\partial
n}ds\\
&=\frac{1}{2\pi r}\iint\limits_{x^2+y^2\leqslant r^2}\Delta
f(x,y)dxdy\\
&=\frac{1}{2\pi r}\iint\limits_{x^2+y^2\leqslant
r^2}(x^2+y^2)dxdy\\
&=\frac{1}{2\pi r}\int_0^{2\pi}d\theta\int_0^r\rho^3d
\rho\\
&=\frac{r^3}{4}.\end{array}
\]
由于$I(0)=0$, 故
\[I(r)=\frac{r^4}{16}.\]
解答二:
最简洁的解法:
令
\[g(x,y)=f(x,y)-\frac{x^4+y^4}{12},\]
则$g$是调和函数, $g(0,0)=0$, 从而根据平均值定理
\[\frac{1}{2\pi r}\oint_{x^2+y^2=r^2}g(x,y)ds=g(0,0)=0,\]
因此 \[\frac{1}{2\pi r}\oint_{x^2+y^2=r^2}f(x,y)ds=\frac{1}{24\pi
r}\oint_{x^2+y^2=r^2}(x^4+y^4)d s=\frac{r^4}{16}.\]
(转引自博士家园,作者: Hansschwarzkopf )


雷达卡
京公网安备 11010802022788号







