解:
1、解法一、积分定义法
$\begin{align*}\lim_{n \to +\infty }\frac{1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots +\frac{1}{\sqrt{n}}}{\sqrt{n}}&=\lim_{n \to +\infty }\frac{\frac{1}{\sqrt{\frac{1}{n}}}+\frac{1}{\sqrt{\frac{2}{n}}}+\frac{1}{\sqrt{\frac{3}{n}}}+\cdots +\frac{1}{\sqrt{\frac{n}{n}}}}{\sqrt{n}\cdot \sqrt{n}}\\\\&=\int_{0}^{1}\frac{1}{\sqrt{x}}dx\\\\&=2x^{1/2}|_0^1=2.
\end{align*}$
解法二、用Stolz定理
$\begin{align*}\lim_{n \to +\infty }\frac{1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots +\frac{1}{\sqrt{n}}}{\sqrt{n}}&=\lim_{n \to +\infty }\frac{\frac{1}{\sqrt{n+1}}}{\sqrt{n+1}-\sqrt{n}}\\\\&=\lim_{n \to +\infty }\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}}\\\\&=2.
\end{align*}$
2、因为
$\displaystyle \lim_{n \to +\infty }\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\frac{\sqrt[k]{k}}{\sqrt{n+1-k}}\geq \lim_{n \to +\infty }\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\frac{\sqrt[k]{k}}{\sqrt{n}}\geq \lim_{n \to +\infty }\frac{\sqrt[k]{1}\cdot n}{\sqrt{n}\cdot \sqrt{n}}=1.$
又
$\displaystyle \lim_{n \to +\infty }\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\frac{\sqrt[k]{k}}{\sqrt{n+1-k}}\leq \lim_{n \to +\infty }\frac{1}{\sqrt{n}}\frac{\sqrt[1]{1}\cdot n}{\sqrt{n}\sqrt{1+\frac{1-k}{n}}}=1.$
其中
$\because k^{\frac{1}{k}}\downarrow ,(k\geq 1).$
$\therefore k^{\frac{1}{k}}\leq \sqrt[1]{1}.$
所以原极限为$1$.


雷达卡


京公网安备 11010802022788号







