解:
根据已知条件,计算可得$b=9,a=-\frac{1}{2}$.选$B$.
$\displaystyle \because f(x)=\lim_{n \to \infty }\frac{a}{n}(1+\cos \frac{ax}{n}+\cdots +\cos \frac{a(n-1)x}{n})=\frac{1}{x}\int_{0}^{ax}\cos tdt=\frac{1}{x}\sin ax.$
$\displaystyle \therefore \lim_{x\to 0-}f(x)=a.$
$\displaystyle \lim_{t\to -\infty }\frac{t+1}{\sqrt{t^2-t+1}-\sqrt{bt^2-t+1}}=\frac{1}{-1+\sqrt{b}}.$
$\displaystyle \lim_{n \to \infty }\sqrt[n]{\frac{x^n}{2^n}+\frac{x^{3n}}{8^n}}=\frac{x}{2},(x\in(1,1+\delta )).$


雷达卡
京公网安备 11010802022788号







