解:
$\because x_1> 0,x_{k+1}=\frac{x_k^2}{2(x_k-1)},$
$\therefore x^2_{k+1}-2x_{k+1}=x_k^2-2x_kx_{k+1}+x^2_{k+1}=(x_k-x_{k+1})^2\geq 0.$
$\Rightarrow x_{k+1}\geq 2.$
$\{x_k\}$有界。从而由
$\frac{x_{k+1}}{x_k}=\frac{x_k}{2(x_k-1)}\geq \frac{2}{2(2-1)}=1.$
$\{x_k\}$单调增。故 $\{x_k\}$有极限。
设
$\displaystyle \lim_{n \to \infty }x_n=l,$
则有:
$l=\frac{l^2}{2(l-1)},\rightarrow l=2.$
因此,级数收敛。


雷达卡
京公网安备 11010802022788号







