|
举个系统数据的例子:
sysuse auto
sqreg price weight length foreign, quantile(.05 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95)
. sqreg price weight length foreign, quantile(.05 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95)
(fitting base model)
(bootstrapping ....................)
Simultaneous quantile regression Number of obs = 74
bootstrap(20) SEs .05 Pseudo R2 = 0.1456
.10 Pseudo R2 = 0.1385
.20 Pseudo R2 = 0.1507
.30 Pseudo R2 = 0.1854
.40 Pseudo R2 = 0.2089
.50 Pseudo R2 = 0.2347
.60 Pseudo R2 = 0.2692
.70 Pseudo R2 = 0.3320
.80 Pseudo R2 = 0.4425
.90 Pseudo R2 = 0.4911
.95 Pseudo R2 = 0.5111
------------------------------------------------------------------------------
| Bootstrap
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
q5 |
weight | 1.461614 1.223335 1.19 0.236 -.9782518 3.901479
length | -29.10025 27.23605 -1.07 0.289 -83.42083 25.22034
foreign | 523.3007 1185.162 0.44 0.660 -1840.43 2887.032
_cons | 4829.181 3440.041 1.40 0.165 -2031.763 11690.13
-------------+----------------------------------------------------------------
q10 |
weight | 1.854952 .6715401 2.76 0.007 .5156077 3.194297
length | -22.33483 17.01256 -1.31 0.194 -56.2653 11.59565
foreign | 1275.206 875.805 1.46 0.150 -471.5317 3021.944
_cons | 2396.777 2775.295 0.86 0.391 -3138.375 7931.929
-------------+----------------------------------------------------------------
q20 |
weight | 1.843421 1.950499 0.95 0.348 -2.046727 5.733569
length | -10.79473 42.47795 -0.25 0.800 -95.51433 73.92487
foreign | 1666.437 923.9231 1.80 0.076 -176.2698 3509.143
_cons | 441.0287 2958.007 0.15 0.882 -5458.53 6340.587
-------------+----------------------------------------------------------------
q30 |
weight | 1.705171 2.68536 0.63 0.528 -3.650611 7.060953
length | 5.090148 64.37871 0.08 0.937 -123.3091 133.4894
foreign | 2148.599 982.3306 2.19 0.032 189.4022 4107.796
_cons | -1843.919 4207.725 -0.44 0.663 -10235.96 6548.125
-------------+----------------------------------------------------------------
q40 |
weight | 1.893098 2.873643 0.66 0.512 -3.838202 7.624397
length | 7.228116 70.11551 0.10 0.918 -132.6129 147.0691
foreign | 2676.242 1067.296 2.51 0.014 547.5859 4804.897
_cons | -2753.278 4806.916 -0.57 0.569 -12340.37 6833.814
-------------+----------------------------------------------------------------
q50 |
weight | 3.933588 3.24152 1.21 0.229 -2.53142 10.3986
length | -41.25191 90.19226 -0.46 0.649 -221.1347 138.6309
foreign | 3377.771 1001.372 3.37 0.001 1380.597 5374.944
_cons | 344.6494 7906.721 0.04 0.965 -15424.81 16114.11
-------------+----------------------------------------------------------------
q60 |
weight | 5.975028 3.16872 1.89 0.063 -.3447843 12.29484
length | -100.1002 94.05582 -1.06 0.291 -287.6886 87.48823
foreign | 3730.962 1060.593 3.52 0.001 1615.676 5846.249
_cons | 5901.206 9057.955 0.65 0.517 -12164.32 23966.73
-------------+----------------------------------------------------------------
q70 |
weight | 7.630592 2.387583 3.20 0.002 2.868708 12.39248
length | -161.4375 83.07945 -1.94 0.056 -327.1342 4.25923
foreign | 3672.635 1142.762 3.21 0.002 1393.467 5951.802
_cons | 13176.74 9292.415 1.42 0.161 -5356.401 31709.87
-------------+----------------------------------------------------------------
q80 |
weight | 8.906373 1.925212 4.63 0.000 5.066659 12.74609
length | -211.7601 70.31082 -3.01 0.004 -351.9906 -71.52957
foreign | 3995.263 996.9791 4.01 0.000 2006.851 5983.676
_cons | 19619.38 8047.923 2.44 0.017 3568.305 35670.46
-------------+----------------------------------------------------------------
q90 |
weight | 9.665794 1.545686 6.25 0.000 6.583019 12.74857
length | -248.7804 71.37275 -3.49 0.001 -391.1289 -106.432
foreign | 4164.352 1082.917 3.85 0.000 2004.543 6324.162
_cons | 25190.95 8520.59 2.96 0.004 8197.174 42184.73
-------------+----------------------------------------------------------------
q95 |
weight | 7.097063 2.401118 2.96 0.004 2.308186 11.88594
length | -121.9554 108.4965 -1.12 0.265 -338.3448 94.434
foreign | 2027.035 950.5062 2.13 0.036 131.3102 3922.76
_cons | 10797.29 13061.49 0.83 0.411 -15253.04 36847.62
------------------------------------------------------------------------------
不知道这个表,是不是你想要的?
|