楼主: ahixyz
3289 10

[CFA] 求教P Sample Questions #147 [推广有奖]

  • 0关注
  • 0粉丝

高中生

62%

还不是VIP/贵宾

-

威望
0
论坛币
601 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
193 点
帖子
20
精华
0
在线时间
47 小时
注册时间
2007-2-11
最后登录
2015-2-25

楼主
ahixyz 发表于 2010-7-21 10:44:35 |AI写论文
10论坛币
147. The amount of a claim that a car insurance company pays out follows an exponential distribution. By imposing a deductible of d, the insurance company reduces the expected claim payment by 10%. Calculate the percentage reduction on the variance of the claim payment.
(A) 1%
(B) 5%
(C) 10%
(D) 20%
(E) 25%

147. Key: A
Let X denote the amount of a claim before application of the deductible. Let Y denote the amount of a claim payment after application of the deductible. Let
k be the mean of X, which because X is exponential, implies that k^2 is the variance of X and E(X^2)=2k^2. By the memoryless property of the exponential distribution, the conditional distribution of the portion of a claim above the deductible given that the claim exceeds the deductible is an exponential distribution with mean k. Given that E(Y)=0.9k, this implies that the probability of a claim exceeding the deductible is 0.9 and thus E(Y^2)=0.9*2k^2=1.8k^2.

我不太理解为什么 E(Y^2)=0.9*2k^2=1.8k^2。麻烦大家赐教~

最佳答案

Enthuse 查看完整内容

Keep in mind: Y = 0 if X d Then: E(Y^2) = Pr(X>d) E(Y^2| X>d) + Pr(Xd) + 0 = 0.9 E((X-d)^2| X>d) = 0.9 E(X^2) = 0.9 * 2k^2 = 1.8 k^2
关键词:questions question Sample tions Quest 求教 Sample questions

沙发
Enthuse 发表于 2010-7-21 10:44:36
ahixyz 发表于 2010-7-21 10:44
147. The amount of a claim that a car insurance company pays out follows an exponential distribution. By imposing a deductible of d, the insurance company reduces the expected claim payment by 10%. Calculate the percentage reduction on the variance of the claim payment.
(A) 1%
(B) 5%
(C) 10%
(D) 20%
(E) 25%

147. Key: A
Let X denote the amount of a claim before application of the deductible. Let Y denote the amount of a claim payment after application of the deductible. Let
k be the mean of X, which because X is exponential, implies that k^2 is the variance of X and E(X^2)=2k^2. By the memoryless property of the exponential distribution, the conditional distribution of the portion of a claim above the deductible given that the claim exceeds the deductible is an exponential distribution with mean k. Given that E(Y)=0.9k, this implies that the probability of a claim exceeding the deductible is 0.9 and thus E(Y^2)=0.9*2k^2=1.8k^2.

我不太理解为什么 E(Y^2)=0.9*2k^2=1.8k^2。麻烦大家赐教~
Keep in mind:
Y = 0 if X<=d
Y = X-d if X > d

Then:
E(Y^2)
= Pr(X>d) E(Y^2| X>d) + Pr(X<=d) * E(Y^2| X<=d)
=Pr(X>d) E(Y^2| X>d) + 0
= 0.9 E((X-d)^2| X>d)
= 0.9 E(X^2)
= 0.9 * 2k^2
= 1.8 k^2

藤椅
linxibupt 发表于 2010-7-21 10:50:39
楼主 辛苦了 啊

板凳
Frevo1234 发表于 2010-7-21 11:31:54
我瞎说一个啊,你看对不对。。。
E(x)=∫(0-无穷)P(X>x)dx
E(x^2)=∫(0-无穷)P(X^2>x)d(x^2)
又因为exponential dist.的无记忆性,得出E(x^2)=2[E(x)]^2,这是成比例的
所以,若E(x)=.9*k,那么,E(x^2)就等于.9*2*k^2
欢迎拍砖^ ^

报纸
ahixyz 发表于 2010-7-21 15:40:31
感谢LS提供的思路,但我感觉好像不太对。。。

不知还有高人提供见解吗?非常感谢!

地板
Frevo1234 发表于 2010-7-21 16:03:38
lz能否斧正一下?

7
wbwd1997 发表于 2010-7-22 00:46:04
darth vender rule只能用来求期望吧...那个是有严格证明的...2阶距的证明麻烦给一下吧...

8
Frevo1234 发表于 2010-7-22 02:24:48
具体内容,你可以看一下guo的p 第十版,195-196页 6# wbwd1997

9
ahixyz 发表于 2010-7-22 09:46:28
感谢ls的思路,非常感谢。

还有一个小问题,why E((X-d)^2| X>d) =E(X^2) ? because of  the memoryless property of the exponential distribution?

10
ahixyz 发表于 2010-7-22 09:50:44
再补充一下上面我的问题,我了解E((X-d)| X>d) =E(X),E((X| X>d) =E(X)+d,那么 E((X-d)^2| X>d) =E(X^2)? E((X^2| X>d) =?

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-29 00:15