Jian Ma. Estimating Transfer Entropy via Copula Entropy. arXiv:1910.04375, 2019.
URL: https://arxiv.org/abs/1910.04375
文中给出了利用copula熵估计传递熵的非参数方法,方法简便易行,普遍适用。下面的代码例子利用这个方法做北京地区气象因素对PM2.5的因果关系估计的分析。其中,第11行代码(3个copula熵的运算)即为估计传递熵的方法。代码在github的共享仓库网址为: https://github.com/majianthu/transferentropy
- library(copent)
- prsa2010data = read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00381/PRSA_data_2010.1.1-2014.12.31.csv")
- data = prsa2010data[2200:2700,c(6,9)]
- tslag = 0
- for (lag in 1:24){
- pm25a = data[1:(501-lag),1]
- pm25b = data[(lag+1):501,1]
- v1 = data[1:(501-lag),2]
- data1 = cbind(pm25a, pm25b, v1)
- tslag[lag] = copent(data1) - copent(data1[,c(1,2)]) - copent(data1[,c(1,3)])
- }
- x11()
- plot(tslag, xlab = "lag (hours)", ylab = "Transfer Entropy", main = "Pressure")
- lines(tslag)


雷达卡






京公网安备 11010802022788号







