解:
1、
$\displaystyle \lim_{n \to \infty }\sum_{i=1}^{n}\frac{1}{n}\sqrt{1+\frac{i}{n}}=\int_{0}^{1}\sqrt{1+x}dx=\frac{2}{3}(2\sqrt{2}-1).$
2、因为
$\begin{align*}(1+\frac{1}{n^2+1}+\frac{1}{n^2+2}+\cdots +\frac{1}{n^2+n})^n&> (1+\frac{n}{n^2+n})^n\\\\&=(1+\frac{1}{n+1})^{(n+1)\cdot \frac{n}{n+1}}\\\\&=e,(n \to \infty )\end{align*}$
$\begin{align*}(1+\frac{1}{n^2+1}+\frac{1}{n^2+2}+\cdots +\frac{1}{n^2+n})^n&<(1+\frac{n}{n^2+1})^n \\\\&=(1+\frac{n}{n^2+1})^{\frac{n^2+1}{n}\cdot \frac{n^2}{n^2+1}}\\\\&=e,(n \to \infty )\end{align*}$
所以有
$\displaystyle \lim_{n \to \infty }(1+\frac{1}{n^2+1}+\frac{1}{n^2+2}+\cdots +\frac{1}{n^2+n})^n=e.$
3、
$\displaystyle \because 0< xy\tan \frac{xy}{1+xy}< xy\tan \frac{xy}{xy}=\frac{\pi}{4}xy.$
$\displaystyle \therefore \lim_{y\to+\infty}\lim_{x\to 0}xy\tan \frac{xy}{1+xy}=0.$
4、
$\displaystyle \because 0\leq \frac{\sin(x^3+y^3)}{x^2+y^2}\leq \frac{x^3+y^3}{x^2+y^2}\leq \frac{(x+y)(x^2-xy+y^2)}{x^2+y^2}\leq (x+y)=0,((x,y)\rightarrow (0,0))$
$\displaystyle \therefore \lim_{(x,y)\rightarrow (0,0)}\frac{\sin(x^3+y^3)}{x^2+y^2}=0.$
5、
$\displaystyle \lim_{x\to 0}\frac{1-cos x}{x\ln(1+\sin x)}=\lim_{x\to 0}\frac{\frac{1}{2}x^2+o(x^2)}{x(\sin x+o(\sin x))}=\lim_{x\to 0}\frac{\frac{1}{2}x^2+o(x^2)}{x^2+o(x^2))}=\frac{1}{2}.$


雷达卡
京公网安备 11010802022788号







