解:
$\begin{align*}\because \sum_{n=1}^{\infty }\frac{1}{n(2n+1)}&=2\sum_{n=1}^{\infty }\frac{1}{2n(2n+1)}\\\\&=2\sum_{n=1}^{\infty }(\frac{1}{2n}-\frac{1}{2n+1})\\\\&=2(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\cdots )\\\\&=2(-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\cdots )+2\\\\&=-2\sum_{n=1}^{\infty }(-1)^{n-1}\frac{1}{n}+2.\end{align*}$
又
$\displaystyle \because \ln(1+x)=\sum_{n=1}^{\infty }(-1)^{n-1}\frac{1}{n}x^n,$
令
$\displaystyle x=1,$
得
$\displaystyle \ln2=\sum_{n=1}^{\infty }(-1)^{n-1}\frac{1}{n}.$
因此
$\displaystyle \therefore \sum_{n=1}^{\infty }\frac{1}{n(2n+1)}=2-2\sum_{n=1}^{\infty }(-1)^{n-1}\frac{1}{n}=2-2\ln2.$


雷达卡
京公网安备 11010802022788号







