中国人民大学2020年数学分析试题
解:
(1)
$\displaystyle f'_x(x,y)=-ye^{-y^2}\sin xy,$
$\displaystyle \because |\cos xy|\leq 1,e^{-y^2}\rightarrow 0,(y\rightarrow +\infty )$
所以$F(x)$一致收敛。又
$\displaystyle \because |\sin xy|\leq 1,-ye^{-y^2}\rightarrow 0,$
$\displaystyle \therefore \int_{0}^{+\infty }f'_x(x,y)dy=\int_{0}^{+\infty }-ye^{-y^2}\sin xydy,$
也一致收敛。因此,$F(x)$可导,且
$\displaystyle F'(x)=\frac{\mathrm{d} F(x)}{\mathrm{d} x}=\int_{0}^{+\infty }f'_x(x,y)dy=\int_{0}^{+\infty }-ye^{-y^2}\sin xydy,$
(2)、题目应该有误。正确的应为
$\begin{align*}xF(x)+2F'(x)&=x\int_{0}^{+\infty }e^{-y^2}\cos xydy-2\int_{0}^{+\infty }ye^{-y^2}\sin xydy\\\\&=(e^{-y^2}\sin xy)|_0^{+\infty }-\int_{0}^{+\infty }-2ye^{-y^2}\sin xydy-2\int_{0}^{+\infty }ye^{-y^2}\sin xydy\\\\&=0.\end{align*}$
(3)、
$\displaystyle \because F(x)=\int_{0}^{+\infty }e^{-y^2}\cos xydy$
$\begin{align*}\therefore F'(x)&=\int_{0}^{+\infty }f'_x(x,y)dy=\int_{0}^{+\infty }-ye^{-y^2}\sin xydy\\\\&=\frac{1}{2}(e^{-y^2}\sin xy)|_0^{+\infty }-\frac{x}{2}\int_{0}^{+\infty }e^{-y^2}\cos xydy\\\\&=-\frac{x}{2}F(x),\end{align*}$
$\displaystyle \Rightarrow \frac{F'(x)}{F(x)}=-\frac{x}{2},$
$\displaystyle \therefore \ln F(x)=-\frac{1}{4}x^2+C,$
$\displaystyle F(x)=Ce^{\displaystyle -\frac{1}{4}x^2},$
又
$\displaystyle \because f(0)=\int_{0}^{+\infty }e^{\displaystyle -y^2}dy=\frac{\sqrt{\pi}}{2}=C.$
$\displaystyle \therefore F(x)=\frac{\sqrt{\pi}}{2}e^{\displaystyle -\frac{1}{4}x^2}.$