解:
$\displaystyle x=\frac{1}{2}+r\cos \theta ,y=\frac{1}{2}+r\sin \theta ,$
$\displaystyle |J|=|\frac{\partial (x,y)}{\partial(r,\theta )}|=r,$
$\begin{align*}I&=\iint_D(x+y) dxdy\\\\&=\int_{0}^{2\pi}d\theta \int_{0}^{\frac{\sqrt{2}}{2}}(1+r\cos \theta +r\sin \theta )rdr\\\\&=2\pi\int_{0}^{\frac{\sqrt{2}}{2}}rdr=\frac{\pi}{2}.\end{align*}$


雷达卡
京公网安备 11010802022788号







