同济大学2020年数学分析考研真题
解:
椭球面在$P_0(x_0,y_0,z_0)$处的切平面为
$\displaystyle \frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}=1,$
由题设
$\displaystyle f(p)=\frac{\displaystyle (\frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}-1)^2}{\displaystyle \frac{x_0^2}{a^4}+\frac{y_0^2}{b^4}+\frac{z_0^2}{c^4}},$
令
$\displaystyle Q=\frac{x_0^2}{a^4}+\frac{y_0^2}{b^4}+\frac{z_0^2}{c^4},$
由此,并利用积分的奇偶性
$\begin{align*}I&=\int_\Omega f(p)dV\\\\&=\frac{1}{Q}\int_\Omega (\frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}-1)^2dV\\\\&=\frac{1}{Q}\int_\Omega (\frac{(xx_0)^2}{a^4}+\frac{(yy_0)^2}{b^4}+\frac{(zz_0)^2}{c^4}+1)dV\\\\&=\frac{1}{Q}\int_\Omega (\frac{(xx_0)^2}{a^4}+\frac{(yy_0)^2}{b^4}+\frac{(zz_0)^2}{c^4})dV+\frac{1}{Q}\int_\Omega dV,\end{align*}$
注意到
$\displaystyle \frac{y^2}{b^2}+\frac{z^2}{c^2}\leq 1-\frac{x^2}{a^2}$
所以
$\begin{align*}\int_\Omega \frac{(xx_0)^2}{a^4}dV&=\frac{x_0^2}{a^4}\int_\Omega x^2dV\\\\&=\frac{2x_0^2}{a^4}\int_{0}^{a} x^2dx\iint_{D_{yz}}dS\\\\&=\frac{2x_0^2}{a^4}\int_{0}^{a} x^2\cdot \pi bc(1-\frac{x^2}{a^2})dx\\\\&=\frac{4}{15a}\pi bcx_0^2.\end{align*}$
同理有
$\displaystyle \int_\Omega \frac{(yy_0)^2}{b^4}dV=\frac{4}{15b}\pi acy_0^2.$
$\displaystyle \int_\Omega \frac{(zz_0)^2}{c^4}dV=\frac{4}{15c}\pi abz_0^2.$
而
$\displaystyle \int_\Omega dV=\frac{4}{3}\pi abc.$
所以
$\displaystyle I=\frac{\displaystyle \frac{4}{15a}\pi bcx_0^2+\frac{4}{15b}\pi acy_0^2+\frac{4}{15c}\pi abz_0^2+\frac{4}{3}\pi abc}{\displaystyle \frac{x_0^2}{a^4}+\frac{y_0^2}{b^4}+\frac{z_0^2}{c^4}}.$