楼主: andywang
2787 1

多维正态随机变量产生 [推广有奖]

  • 9关注
  • 21粉丝

已卖:2758份资源

学科带头人

13%

还不是VIP/贵宾

-

威望
1
论坛币
47223 个
通用积分
19.9984
学术水平
136 点
热心指数
160 点
信用等级
112 点
经验
1873 点
帖子
1073
精华
0
在线时间
2048 小时
注册时间
2005-6-23
最后登录
2024-3-25

初级热心勋章

楼主
andywang 发表于 2010-11-14 19:39:41 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
mvnrnd 多维正态随机变量生产
Multivariate normal random numbe

本帖隐藏的内容


rs
Syntax
R = mvnrnd(MU,SIGMA)
r = mvnrnd(MU,SIGMA,cases)
Description
R = mvnrnd(MU,SIGMA) returns an n-by-d matrix R of random vectors chosen from the multivariate normal distribution with mean MU, and covariance SIGMA. MU is
an n-by-d matrix, and mvnrnd generates each row of R using the corresponding row of mu. SIGMA is a d-by-d symmetric positive semi-definite matrix, or a d-
by-d-by-n array. If SIGMA is an array, mvnrnd generates each row of R using the corresponding page of SIGMA, i.e., mvnrnd computes R(i,:) using MU(i,:) and
SIGMA(:,:,i). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, SIGMA may also be
specified as a 1-by-d vector or a 1-by-d-by-n array, containing just the diagonal. If MU is a 1-by-d vector, mvnrnd replicates it to match the trailing
dimension of SIGMA.
r = mvnrnd(MU,SIGMA,cases) returns a cases-by-d matrix R of random vectors chosen from the multivariate normal distribution with a common 1-by-d mean vector
MU, and a common d-by-d covariance matrix SIGMA.
Examples
mu = [2 3];
SIGMA = [1 1.5; 1.5 3];
r = mvnrnd(mu,SIGMA,100);
plot(r(:,1),r(:,2),'+')
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:随机变量 Multivariate distribution multivariat Description 多维 随机变量

沙发
hazys 发表于 2012-3-1 08:43:40
学习学习,谢谢

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-27 05:49