楼主: xdfhz
643 0

Non-equilibrium Evaporation and Condensation Processes_Analytical Solutions [推广有奖]

副教授

66%

还不是VIP/贵宾

-

TA的文库  其他...

xdfhz

New Scientist

威望
0
论坛币
21326 个
通用积分
17.1588
学术水平
21 点
热心指数
246 点
信用等级
19 点
经验
31019 点
帖子
503
精华
0
在线时间
210 小时
注册时间
2017-10-19
最后登录
2022-11-6

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Non-equilibrium Evaporation and Condensation Processes_Analytical Solutions.pdf (8.19 MB, 需要: 15 个论坛币)

Non-equilibrium Evaporation and Condensation Processes_Analytical Solutions.epub (2.55 MB, 需要: 15 个论坛币)

cover.jpg (435.95 KB, 需要: 1 个论坛币)

This monograph presents a comprehensive treatment of analytical solutions to problems in the area of non-equilibrium evaporation and condensation processes. The book covers, among others, topics such as systems of conversation equations for molecular fluxes of mass, momentum and energy within the Knudsen layer, spherical growth of vapor bubbles in volumes of highly superheated liquid. The target audience primarily comprises research experts in the field of thermodynamics and fluid dynamics, but the book may also be beneficial for graduate students alike.


Contents
1 Introduction to the Problem
1.1 Kinetic Molecular Theory
1.2 Discussing the Boltzmann Equation
1.3 Precise Solution to the Boltzmann Equation
1.4 Intensive Phase Change
References
2 Nonequilibrium Effects on the Phase Interface
2.1 Conservation Equations of Molecular Flows
2.1.1 The Distribution Function
2.1.2 Molecular Flows
2.2 Evaporation into Vacuum
2.2.1 The Hertz–Knudsen Equation
2.2.2 Modifications of the Hertz–Knudsen Equation
2.3 Extrapolated Boundary Conditions
2.4 Accommodation Coefficients
2.5 Linear Kinetic Theory
2.5.1 Low Intensity Processes
2.5.2 Impermeable Interface (Heat Transport)
2.5.3 Impermeable Interface (Momentum Transport)
2.5.4 Phase Change
2.5.5 Special Boundary Conditions
2.6 Introduction into the Problem of Strong Evaporation
2.6.1 Conservation Equations
2.6.2 The Model of Crout
2.6.3 The Model of Anisimov
2.6.4 The Model of Rose
2.6.5 The Mixing Model
References
3 Approximate Kinetic Analysis of Strong Evaporation
3.1 Conservation Equations
3.2 Mixing Surface
3.3 Limiting Mass Flux
3.4 Conclusions
References
4 Semi-empirical Model of Strong Evaporation
4.1 Strong Evaporation
4.2 Approximate Analytical Models
4.3 Analysis of the Available Approaches
4.4 The Semi-empirical Model
4.4.1 Linear Jumps
4.4.2 Nonlinear Jumps
4.4.3 Summarized Jumps
4.4.4 Design Relations
4.5 Validation of the Semi-empirical Model
4.5.1 Monatomic Gas
4.5.2 Monatomic Gas
4.5.3 Sonic Evaporation
4.5.4 Polyatomic Gas
4.5.5 Maximum Mass Flow
4.6 Final Remarks
4.7 Conclusions
References
5 Approximate Kinetic Analysis of Strong Condensation
5.1 Macroscopic Models
5.2 Strong Evaporation
5.3 Strong Condensation
5.4 The Mixing Model
5.5 Solution Results
5.6 Sonic Condensation
5.7 Supersonic Condensation
5.8 Conclusions
References
6 Linear Kinetic Analysis of Evaporation and Condensation
6.1 Conservation Equations
6.2 Equilibrium Coopling Conditions
6.3 Linear Kinetic Analysis
6.3.1 Linearized System of Equations
6.3.2 Symmetric and Asymmetric Cases
6.3.3 Kinetic Jumps
6.3.4 Short Description
6.4 Conclusions
References
7 Binary Schemes of Vapor Bubble Growth
7.1 Limiting Schemes of Growth
7.2 The Energetic Thermal Scheme
7.2.1 The Jakob Number
7.2.2 The Plesset-Zwick Formula
7.2.3 Solution of Scriven
7.2.4 Approximations
7.3 Binary Schemes of Growth
7.3.1 The Viscous-Inertial Scheme
7.3.2 The Nonequilibrium-Thermal Scheme
7.3.3 The Inertial-Thermal Scheme
7.3.4 The Region of High Superheatings
7.4 Conclusions
References
8 The Pressure Blocking Effect in a Growing Vapor Bubble
8.1 The Inertial-Thermal Scheme
8.2 Pressure Blocking Effect
8.3 The Stefan Number in the Metastable Region
8.4 Effervescence of the Butane Drop
8.5 Seeking an Analytical Solution
8.6 Conclusions
References
9 Evaporating Meniscus on the Interface of Three Phases
9.1 Evaporating Meniscus
9.2 Approximate Analytical Solution
9.3 Nanoscale Film
9.4 The Averaged Heat Transfer Coefficient
9.5 The Kinetic Molecular Effects
9.6 Conclusions
References
10 Kinetic Molecular Effects with Spheroidal State
10.1 Assumptions in the Analysis
10.2 Hydrodynamics of Flow
10.3 Equilibrium of Drop
10.4 Conclusions
References
11 Flow Around a Cylinder (Vapor Condensation)
11.1 Limiting Heat Exchange Laws
11.2 Asymptotics of Immobile Vapor
11.3 Pressure Asymptotics
11.4 Tangential Stresses at the Interface Boundary
11.5 Results and Discussion
11.6 Conclusions
References
Appendix A: Heat Transfer During Film Boiling
Appendix B: Heat Transfer in a Pebble Bed

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:equilibrium Analytical Processes solutions Analytic

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-4-27 11:14