The limits of the four-input nested CES function
for $\rho_1$, $\rho_2$, and/or $\rho$ approaching zero are:
$$\begin{align}
\lim_{\rho \rightarrow 0} y
=&\gamma \, e^{\lambda \, t} \, \exp \left\{ -\nu \left( \frac{\delta \ln ( B_1 ) }{ \rho_1 }
+ \frac{(1-\delta) \ln ( B_2 ) }{ \rho_2 } \right) \right\}\\
\lim_{\rho_1 \rightarrow 0} y
=& \gamma \, e^{\lambda \, t} \, \left( \delta
\exp \{ - \rho \; L_1 \}
+ ( 1 - \delta )
B_2^{\frac{\rho}{\rho_2}} \right)^{ -\frac{\nu}{\rho}}\\
\lim_{\rho_2 \rightarrow 0} y
=& \gamma \, e^{\lambda \, t} \,
\left( \delta B_1^{\frac{\rho}{\rho_1}}
+ ( 1 - \delta ) \exp \{ - \rho \; L_2 )
\} \right)^{ -\frac{\nu}{\rho} }\\
\lim_{ \rho_2 \rightarrow 0} \, \lim_{\rho_1 \rightarrow 0} y =&
\gamma \, e^{\lambda \, t} \, \left( \delta \exp \left\{ - \rho \; L_1 \right\}
+ ( 1 - \delta ) \exp \left\{ - \rho \; L_2 \right\} \right)^{-\frac{\nu}{\rho}}\\
\lim_{ \rho_1 \rightarrow 0} \, \lim_{\rho \rightarrow 0} y =&
\gamma \, e^{\lambda \, t} \, \exp \left\{ -\nu \left( - \delta \; L_1 +
( 1 - \delta ) \frac{\ln ( B_2 )}{\rho_2} \right) \right\}\\
\lim_{ \rho_2 \rightarrow 0} \, \lim_{\rho \rightarrow 0} y =&
\gamma \, e^{\lambda \, t} \, \exp \left\{ -\nu \left( \delta \frac{\ln ( B_1 )}{\rho_1}
- ( 1 - \delta ) L_2 \right) \right\}\\
\lim_{\rho_1 \rightarrow 0} \, \lim_{\rho_2 \rightarrow 0} \, \lim_{\rho \rightarrow 0} y =&
\gamma \, e^{\lambda \, t} \, \exp \left\{ -\nu \left( - \delta \; L_1
- ( 1 - \delta ) L_2 \right) \right\}
\end{align}$$




雷达卡
京公网安备 11010802022788号







