Hicks-McFadden elasticity of substitution
$$
\sigma_{i,j} = \begin{cases}
\dfrac{\dfrac{1}{\theta_i} + \dfrac{1}{\theta_j}}
{(1-\rho_1) \left( \dfrac{1}{\theta_i} - \dfrac{1}{\theta^*} \right)
+ (1-\rho_2) \left( \dfrac{1}{\theta_j} - \dfrac{1}{\theta} \right)
+ (1-\rho) \left( \dfrac{1}{\theta^*} - \dfrac{1}{\theta} \right) }
& \text{for } i=1,2; \; j=3 \\
& \\
(1-\rho_1)^{-1}
& \mbox{text } i=1; \; j=2
\end{cases}
$$
with
$$
\begin{align}
& \theta^* = \delta
B_1^{\frac{\rho}{\rho_1}} \cdot y^\rho \\
& \theta = (1-\delta) x_3^{-\rho} \cdot y^{\rho} \\
& \theta_1 = \delta \delta_1 x_1^{-\rho_1}
B_1^{-\frac{\rho_1 - \rho}{\rho_1}}
\cdot y^{\rho} \\
& \theta_2 = \delta (1 - \delta_1) x_2^{-\rho_1}
B_1^{-\frac{\rho_1 - \rho}{\rho_1}}
\cdot y^{\rho} \\
& \theta_3 = \theta
\end{align}
$$




雷达卡
京公网安备 11010802022788号







