$$\begin{eqnarray}
f_{\nu}'\left(0\right) & = & \lim_{\rho\rightarrow0}f_{\nu}'\left(\rho\right)\\
& = & \lim_{\rho\rightarrow0}\left(g_{\nu}'\left(\rho\right)\,\exp\left(f\left(\rho\right)\right)+g_{\nu}\left(\rho\right)\,\exp\left(f\left(\rho\right)\right)\, f'\left(\rho\right)\right)\\
& = & \lim_{\rho\rightarrow0}g_{\nu}'\left(\rho\right)\,\exp\left(\lim_{\rho\rightarrow0}f\left(\rho\right)\right)+\lim_{\rho\rightarrow0}g_{\nu}\left(\rho\right)\,\exp\left(\lim_{\rho\rightarrow0}f\left(\rho\right)\right)\lim_{\rho\rightarrow0}f'\left(\rho\right)\\
& = & g_{\nu}'\left(0\right)\,\exp\left(f\left(0\right)\right)+g_{\nu}\left(0\right)\,\exp\left(f\left(0\right)\right)f'\left(0\right)\\
& = & \exp\left(f\left(0\right)\right)\left(g_{\nu}'\left(0\right)+g_{\nu}\left(0\right)\, f'\left(0\right)\right)\\
& = & \exp\left(\nu\left(\delta\,\ln x_{1}+\left(1-\delta\right)\,\ln x_{2}\right)\right)\left(\frac{\delta\left(1-\delta\right)}{2}\left(\ln x_{1}-\ln x_{2}\right)^{2}\right.\\
& & \left.+\left(-\delta\,\ln x_{1}-\left(1-\delta\right)\,\ln x_{2}\right)\left(-\frac{\nu\delta\left(1-\delta\right)}{2}\left(\ln x_{1}-\ln x_{2}\right)^{2}\right)\right)\nonumber \\
& = & x_{1}^{\nu\delta}x_{2}^{\nu\left(1-\delta\right)}\frac{\delta\left(1-\delta\right)}{2}\left(\ln x_{1}-\ln x_{2}\right)^{2}\left(1+\nu\left(\delta\,\ln x_{1}+\left(1-\delta\right)\,\ln x_{2}\right)\right)\end{eqnarray}$$




雷达卡
京公网安备 11010802022788号







