【长安大学2023】
解:用极坐标。
$\displaystyle D:x=r\cos \theta ,y=r\sin \theta ,\varepsilon \leq r\leq R,0\leq \theta \leq 2\pi,$
而
$\displaystyle \frac{\partial f}{\partial r}=\frac{\partial f}{\partial x}\cdot \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\cdot \frac{\partial y}{\partial r}=\frac{1}{r}(xf_x+yf_y),$
因此,有
$\begin{align*}\lim_{\varepsilon \to0}\frac{-1}{2\pi}\iint_{\varepsilon ^2\leq x^2+y^2\leq R^2}\frac{xf_x+yf_y}{x^2+y^2}dxdy&=\lim_{\varepsilon \to0}\frac{-1}{2\pi}\iint_D\frac{r\frac{\partial f}{\partial r}}{r^2}\cdot rdrd\theta \\\\&=\lim_{\varepsilon \to0}\frac{-1}{2\pi}\int_{0}^{2\pi}d\theta \int_{\varepsilon }^{R}\frac{\partial f}{\partial r}dr\\\\&=\lim_{\varepsilon \to0}\frac{-1}{2\pi}\int_{0}^{2\pi}(f(R\cos \theta ,R\sin \theta )-f(\varepsilon \cos \theta ,\varepsilon \sin \theta ))d\theta \\\\&=\lim_{\varepsilon \to0}\frac{-1}{2\pi}\int_{0}^{2\pi}(0-f(\varepsilon \cos \theta ,\varepsilon \sin \theta ))d\theta \\\\&=\lim_{\varepsilon \to0}f(\varepsilon \cos \theta^\ast ,\varepsilon \sin \theta^\ast ),\theta^\ast\in(0,2\pi)\\\\&=f(0,0)=2023.\end{align*}$
注:最后一步利用积分中值定理。