复旦大学2020-2021学年第二学期期中(英才班)
(1)、解
显然,分子分母积分均收敛。所以由积分第一中值定理,有
$\displaystyle \int_{0}^{\frac{1}{2}}x^{nx}dx=\frac{1}{2}\xi ^{n\xi},(\xi\in(0,\frac{1}{2}))$
$\displaystyle \int_{\frac{1}{2}}^{1}x^{nx}dx=\frac{1}{2}\eta ^{n\eta },(\eta \in(\frac{1}{2},1))$
因此
$\displaystyle \lim_{n \to +\infty }\frac{\int_{0}^{\frac{1}{2}}x^{nx}dx}{\int_{\frac{1}{2}}^{1}x^{nx}dx}=\lim_{n \to +\infty }\frac{\frac{1}{2}\xi ^{n\xi}}{\frac{1}{2}\eta ^{n\eta }}=\lim_{n \to +\infty }(\frac{\xi }{\eta })^{n\xi}\cdot (\frac{1}{\eta })^{n(\eta -\xi)}=0.$
(2)、解
令$nx=t,$则$x=t/n,dx=dt/n.$
$\begin{align*} I&=\lim_{n \to \infty }\frac{\displaystyle\int_{0}^{1}\frac{x^{nx}}{1+x^2}dx}{\displaystyle\int_{0}^{1}x^{nx}dx}\\\\&=\lim_{n \to \infty }\frac{\displaystyle \int_{0}^{n}\frac{(\frac{t}{n})^t}{1+(\frac{t}{n})^2}\cdot \frac{dt}{n}}{\displaystyle \int_{0}^{n}(\frac{t}{n})^tdt}\\\\&=\lim_{n \to \infty }\frac{\displaystyle \frac{(\frac{n}{n})^n}{1+(\frac{n}{n})^2}\cdot \frac{1}{n}}{(\displaystyle \frac{n}{n})^n}\\\\&=0.\end{align*}$