摘要翻译:
设$(R,\Mathfrak m)$表示一个$N$维Gorenstein环。对于高度为$C$的理想$I\子集R$,我们对自同态环$B=\HOM_R(H^C_I(R),H^C_I(R))感兴趣。在$(R,\Mathfrak m)$的情况下,包含字段$B$的正则局部环是Cohen-Macaulay环。它的性质与最大Lyubeznik数$L=\dim_k\ext_r^d(k,h^c_i(R)).特别是$R\simeq b$当且仅当$L=1.并且我们证明了$\ext_r^d(k,h^c_i(R))\到k$的自然同态是非零的。
---
英文标题:
《On Lyubeznik's invariants and endomorphisms of local cohomology modules》
---
作者:
Peter Schenzel
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $(R, \mathfrak m)$ denote an $n$-dimensional Gorenstein ring. For an ideal $I \subset R$ of height $c$ we are interested in the endomorphism ring $B = \Hom_R(H^c_I(R), H^c_I(R)).$ It turns out that $B$ is a commutative ring. In the case of $(R,\mathfrak m)$ a regular local ring containing a field $B$ is a Cohen-Macaulay ring. Its properties are related to the highest Lyubeznik number $l = \dim_k \Ext_R^d(k,H^c_I(R)).$ In particular $R \simeq B$ if and only if $l = 1.$ Moreover, we show that the natural homomorphism $\Ext_R^d(k, H^c_I(R)) \to k$ is non-zero.
---
PDF链接:
https://arxiv.org/pdf/0704.2007


雷达卡



京公网安备 11010802022788号







