摘要翻译:
设$H$和$H′$是非奇异射影曲面$X$上的两个充足线束,而$M(H)$(r.$M(H′)$)是固定型$(r=2,c_1,c_2)$的$H$-半可(r.$H′$-半可)束的粗模格式。在一种来自初等变换的模理论方法中,当分隔$H$和$H'$的墙不一定是好的时,我们通过一系列爆炸来连接$M(H)$和$M(H')$。作为应用,我们还考虑了Donaldson多项式的极化变化问题。
---
英文标题:
《A sequence of blowing-ups connecting moduli of sheaves and the Donaldson
polynomial under change of polarization》
---
作者:
Kimiko Yamada
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $H$ and $H'$ be two ample line bundles over a nonsingular projective surface $X$, and $M(H)$ (resp. $M(H')$) the coarse moduli scheme of $H$-semistable (resp. $H'$-semistable) sheaves of fixed type $(r=2,c_1,c_2)$. In a moduli-theoretic way that comes from elementary transforms, we connect $M(H)$ and $M(H')$ by a sequence of blowing-ups when walls separating $H$ and $H'$ are not necessarily good. As an application, we also consider the polarization change problem of Donaldson polynomials.
---
PDF链接:
https://arxiv.org/pdf/0704.2866


雷达卡



京公网安备 11010802022788号







