摘要翻译:
本文提出了一种用状态空间模型估计多元随机波动率(MSV)的贝叶斯方法。提出了一种基于倒Wishart分布和多元奇异贝塔分布的波动率乘法模型,并采用了灵活的序列波动率更新。由于计算速度快,所得到的估计过程特别适合于在线预报。在模型选择的背景下讨论了三个性能指标:对数似然准则、标准化一步预测误差均值和序列Bayes因子。最后,我们将所提出的方法应用于一个由八种汇率组成的数据集,即港元兑美国元的汇率。
---
英文标题:
《Fast estimation of multivariate stochastic volatility》
---
作者:
Kostas Triantafyllopoulos and Giovanni Montana
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
In this paper we develop a Bayesian procedure for estimating multivariate stochastic volatility (MSV) using state space models. A multiplicative model based on inverted Wishart and multivariate singular beta distributions is proposed for the evolution of the volatility, and a flexible sequential volatility updating is employed. Being computationally fast, the resulting estimation procedure is particularly suitable for on-line forecasting. Three performance measures are discussed in the context of model selection: the log-likelihood criterion, the mean of standardized one-step forecast errors, and sequential Bayes factors. Finally, the proposed methods are applied to a data set comprising eight exchange rates vis-a-vis the US dollar.
---
PDF链接:
https://arxiv.org/pdf/0708.4376