摘要翻译:
对于拟齐次孤立超曲面奇点,对数比较定理已由Holland和Mond显式刻画。在非拟齐次情形下,利用奇异性的Gauss-Manin系统给出了对数比较定理的一个必要条件。特别地,证明了对数比较定理只有当1是单数的特征值时,才能对非拟齐次奇点成立。
---
英文标题:
《Logarithmic comparison theorem versus Gauss-Manin system for isolated
singularities》
---
作者:
Mathias Schulze
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For quasihomogeneous isolated hypersurface singularities, the logarithmic comparison theorem has been characterized explicitly by Holland and Mond. In the non quasihomogeneous case, we give a necessary condition for the logarithmic comparison theorem in terms of the Gauss-Manin system of the singularity. It shows in particular that the logarithmic comparison theorem can hold for a non quasihomogeneous singularity only if 1 is an eigenvalue of the monodromy.
---
PDF链接:
https://arxiv.org/pdf/0706.2512


雷达卡



京公网安备 11010802022788号







