摘要翻译:
本文研究了复辛流形上形变量化的代数体栈上的模,并回顾了一些结果:星积代数的构造,光滑Lagrangian子流形上(扭曲的)单模的存在性,正则完整模解的复形的反常性,好核合成的有限性和对偶性。作为推论,我们得到了具有紧支集的good$\w[\stx]$-模的派生范畴是一个Calabi-Yau范畴。我们还在此框架下给出了一个猜想的Riemann-Roch型公式。
---
英文标题:
《Deformation quantization modules on complex symplectic manifolds》
---
作者:
Pierre Schapira
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study modules over the algebroid stack $\W[\stx]$ of deformation quantization on a complex symplectic manifold $\stx$ and recall some results: construction of an algebra for $\star$-products, existence of (twisted) simple modules along smooth Lagrangian submanifolds, perversity of the complex of solutions for regular holonomic $\W[\stx]$-modules, finiteness and duality for the composition of ``good'' kernels. As a corollary, we get that the derived category of good $\W[\stx]$-modules with compact support is a Calabi-Yau category. We also give a conjectural Riemann-Roch type formula in this framework.
---
PDF链接:
https://arxiv.org/pdf/0704.3007


雷达卡



京公网安备 11010802022788号







