摘要翻译:
本文试图验证树分类器对tabla笔画分类的有效性,特别是对本质上重叠的笔画分类的有效性。它采用决策树、ID3和随机森林作为分类器。实验采用13种不同拍打方式的650个样本的定制数据集。提取了31个不同的特征及其均值和方差进行分类。本研究使用了三个数据集,分别为21361例、18802例和19543例。使用ROC曲线和精度等措施进行了验证。实验结果表明,所有分类器都表现出良好的分类效果,其中随机森林分类器优于其他两种分类器。通过与多层感知器分类结果的比较,验证了随机森林分类自然重叠笔画的有效性。
---
英文标题:
《Tree based classification of tabla strokes》
---
作者:
Subodh Deolekar and Siby Abraham
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Computer Science 计算机科学
二级分类:Information Retrieval 信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
The paper attempts to validate the effectiveness of tree classifiers to classify tabla strokes especially the ones which are overlapping in nature. It uses decision tree, ID3 and random forest as classifiers. A custom made data sets of 650 samples of 13 different tabla strokes were used for experimental purpose. 31 different features with their mean and variances were extracted for classification. Three data sets consisting of 21361, 18802 and 19543 instances respectively were used for the purpose. Validation has been done using measures like ROC curve and accuracy. The experimental results showed that all the classifiers showing excellent results with random forest outperforming the other two. The effectiveness of random forest in classifying strokes which are overlapping in nature is done by comparing the known results of that with multi-layer perceptron.
---
PDF链接:
https://arxiv.org/pdf/1801.01712


雷达卡



京公网安备 11010802022788号







