摘要翻译:
稀疏域(如小波域)中的系数去噪因其简单有效而得到了广泛的研究。文献主要集中在设计最佳全局阈值上。然而,本文提出了一种新的在框架域中使用二元收缩函数的去噪方法。该方法采用最大aposteriori概率估计去噪系数,采用非高斯二元函数对框架系数进行统计建模。对于每个框架系数,根据框架系数的局部统计量存在相应的阈值。实验结果表明,在框架域中使用二元收缩函数比一些常用的去噪方法获得了更好的图像质量和更高的PSNR。
---
英文标题:
《Image denoising through bivariate shrinkage function in framelet domain》
---
作者:
Hamid Reza Shahdoosti
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
Denoising of coefficients in a sparse domain (e.g. wavelet) has been researched extensively because of its simplicity and effectiveness. Literature mainly has focused on designing the best global threshold. However, this paper proposes a new denoising method using bivariate shrinkage function in framelet domain. In the proposed method, maximum aposteriori probability is used for estimate of the denoised coefficient and non-Gaussian bivariate function is applied to model the statistics of framelet coefficients. For every framelet coefficient, there is a corresponding threshold depending on the local statistics of framelet coefficients. Experimental results show that using bivariate shrinkage function in framelet domain yields significantly superior image quality and higher PSNR than some well-known denoising methods.
---
PDF链接:
https://arxiv.org/pdf/1801.00635


雷达卡



京公网安备 11010802022788号







