摘要翻译:
本文在一般情况下研究了群的商和栈的粗模空间。几何商并不总是范畴的,但我们给出了一个几何商是范畴的自然拓扑条件。我们还证明了有限平坦群的几何商的存在性,并给出了显式的局部描述。利用类似的方法,我们给出了具有有限稳定器的平坦群的商的存在性的简单证明。由于证明不使用noetherian方法,且对一般代数空间和代数栈有效,我们得到了Keel和Mori定理的一个稍微改进的版本。
---
英文标题:
《Existence and properties of geometric quotients》
---
作者:
David Rydh
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper, we study quotients of groupoids and coarse moduli spaces of stacks in a general setting. Geometric quotients are not always categorical, but we present a natural topological condition under which a geometric quotient is categorical. We also show the existence of geometric quotients of finite flat groupoids and give explicit local descriptions. Exploiting similar methods, we give an easy proof of the existence of quotients of flat groupoids with finite stabilizers. As the proofs do not use noetherian methods and are valid for general algebraic spaces and algebraic stacks, we obtain a slightly improved version of Keel and Mori's theorem.
---
PDF链接:
https://arxiv.org/pdf/0708.3333


雷达卡



京公网安备 11010802022788号







