摘要翻译:
我们给出了前文(Math.AC/0509697)中关于维数2函数域中生成值序列的环化的主要结果的一个特征自由证明。我们证明了当二维代数正则局部环$R\子集S$的扩张满足Cutkosky和Piltant的强单模化定理的结论时,$R$和$S$中生成序列之间的映射具有环形结构。
---
英文标题:
《Toroidalization of generating sequences in dimension two function fields
of positive characteristic》
---
作者:
Laura Ghezzi, Olga Kashcheyeva
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give a characteristic free proof of the main result of our previous paper (math.AC/0509697) concerning toroidalization of generating sequences of valuations in dimension two function fields. We show that when an extension of two dimensional algebraic regular local rings $R\subset S$ satisfies the conclusions of the Strong Monomialization theorem of Cutkosky and Piltant, the map between generating sequences in $R$ and $S$ has a toroidal structure.
---
PDF链接:
https://arxiv.org/pdf/0710.0697


雷达卡



京公网安备 11010802022788号







