摘要翻译:
无人机(UAVs)的空中监视,即移动摄像机,越来越受到警方和灾区监测的关注。对于更详细的地面图像,相机的分辨率正在稳步提高。同时,视频数据量也在急剧增加。为了减少数据量,引入了感兴趣区域(ROI)编码系统,主要以牺牲剩余图像区域为代价,对部分区域进行更高质量的编码。我们采用了一种基于全局运动补偿的感兴趣区域编码系统来保持整个图像的完整分辨率。采用不同的感兴趣区域检测器对无人机机载视频图像进行感兴趣区域和非感兴趣区域的自动分类。我们提出用改进的高效视频编码(HEVC)编码器取代改进的高级视频编码(AVC)视频编码器。在检测系统本身不做任何改变的情况下,通过更换视频编码后端,虽然在相同的测试序列和相似的PSNR下,常规HEVC编码比常规AVC编码的编码增益仅为12~30%,但编码效率平均提高了32%。由于所采用的ROI编码主要依赖于新出现图像区域的帧内模式编码,因此与包括预测模式(inter)在内的整个帧的常规编码相比,HEVC-ROI编码相对于AVC-ROI编码的增益依赖于序列特性。我们给出了一个详细的帧内比特分布的分析来解释增益。我们可以为30 fps的完整HDTV视频序列提供0.7-1.0Mbit/s的编码数据速率,合理的质量超过37 dB。
---
英文标题:
《Region of Interest (ROI) Coding for Aerial Surveillance Video using AVC
& HEVC》
---
作者:
Holger Meuel, Florian Kluger, J\"orn Ostermann
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
Aerial surveillance from Unmanned Aerial Vehicles (UAVs), i.e. with moving cameras, is of growing interest for police as well as disaster area monitoring. For more detailed ground images the camera resolutions are steadily increasing. Simultaneously the amount of video data to transmit is increasing significantly, too. To reduce the amount of data, Region of Interest (ROI) coding systems were introduced which mainly encode some regions in higher quality at the cost of the remaining image regions. We employ an existing ROI coding system relying on global motion compensation to retain full image resolution over the entire image. Different ROI detectors are used to automatically classify a video image on board of the UAV in ROI and non-ROI. We propose to replace the modified Advanced Video Coding (AVC) video encoder by a modified High Efficiency Video Coding (HEVC) encoder. Without any change of the detection system itself, but by replacing the video coding back-end we are able to improve the coding efficiency by 32% on average although regular HEVC provides coding gains of 12-30% only for the same test sequences and similar PSNR compared to regular AVC coding. Since the employed ROI coding mainly relies on intra mode coding of new emerging image areas, gains of HEVC-ROI coding over AVC-ROI coding compared to regular coding of the entire frames including predictive modes (inter) depend on sequence characteristics. We present a detailed analysis of bit distribution within the frames to explain the gains. In total we can provide coding data rates of 0.7-1.0 Mbit/s for full HDTV video sequences at 30 fps at reasonable quality of more than 37 dB.
---
PDF链接:
https://arxiv.org/pdf/1801.06442