摘要翻译:
多项式方程解的数值同伦延拓是数值代数几何的基础,数学应用推动了数值代数几何的发展。利用数值同伦延拓研究了纯数学中确定Schubert演算中Galois群的问题。例如,我们通过直接计算证明了C^8中3-平面的Schubert问题的Galois群是非平凡地满足15个固定的5-平面是完全对称群S6006。
---
英文标题:
《Galois groups of Schubert problems via homotopy computation》
---
作者:
Anton Leykin and Frank Sottile
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
---
英文摘要:
Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in C^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_6006.
---
PDF链接:
https://arxiv.org/pdf/0710.4607


雷达卡



京公网安备 11010802022788号







