摘要翻译:
玻尔兹曼和吉布斯的统计力学方法对平衡和熵有非常不同的定义。讨论了与此相关的问题,并建议通过将平衡重新定义为用玻尔兹曼熵度量的连续性质(平衡度)而不是二元性质(处于/不处于平衡状态),并通过引入玻尔兹曼熵的热力学性质的概念,来解决这些问题,从而产生一种结合这两种方法的统计力学版本。以Kac环模型为例对建议进行了检验。
---
英文标题:
《Boltzmann, Gibbs and the Concept of Equilibrium》
---
作者:
David A. Lavis
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The Boltzmann and Gibbs approaches to statistical mechanics have very different definitions of equilibrium and entropy. The problems associated with this are discussed and it is suggested that they can be resolved, to produce a version of statistical mechanics incorporating both approaches, by redefining equilibrium not as a binary property (being/not being in equilibrium) but as a continuous property (degrees of equilibrium) measured by the Boltzmann entropy and by introducing the idea of thermodynamic-like behaviour for the Boltzmann entropy. The Kac ring model is used as an example to test the proposals.
---
PDF链接:
https://arxiv.org/pdf/710.2052


雷达卡



京公网安备 11010802022788号







