摘要翻译:
本文旨在满足最近在经济物理学文献中获得更严格的统计方法的要求。为此,我们考虑了一种计量经济学方法来研究价格变动的对数周期模型的结果,该模型已被广泛用于预测金融崩溃。为了实现对未知参数的可靠统计推断,我们在原模型的误差项中加入了自回归动态和条件异方差结构,得到了对数周期AR(1)-GARCH(1,1)模型。原始模型和扩展模型均适用于美国市场的金融指数,即S&P500和Nasdaq。分析表明:对数周期AR(1)-GARCH(1,1)模型的残差具有更好的统计性质;对金融危机时间参数的估计进行了改进。
---
英文标题:
《The log-periodic-AR(1)-GARCH(1,1) model for financial crashes》
---
作者:
L. Gazola, C. Fernandes, A. Pizzinga and R. Riera
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
英文摘要:
This paper intends to meet recent claims for the attainment of more rigorous statistical methodology within the econophysics literature. To this end, we consider an econometric approach to investigate the outcomes of the log-periodic model of price movements, which has been largely used to forecast financial crashes. In order to accomplish reliable statistical inference for unknown parameters, we incorporate an autoregressive dynamic and a conditional heteroskedasticity structure in the error term of the original model, yielding the log-periodic-AR(1)-GARCH(1,1) model. Both the original and the extended models are fitted to financial indices of U. S. market, namely S&P500 and NASDAQ. Our analysis reveal two main points: (i) the log-periodic-AR(1)-GARCH(1,1) model has residuals with better statistical properties and (ii) the estimation of the parameter concerning the time of the financial crash has been improved.
---
PDF链接:
https://arxiv.org/pdf/0801.4341