摘要翻译:
著名的圣彼得堡悖论(圣彼得堡悖论)表明,期望值理论并没有捕捉到决策问题的现实世界经济学。多年来,人们发展了许多经济学理论来解决这一悖论,并解释经济价值理论在评估经济决策、预期结果的主观效用以及圣彼得堡悖论博弈中观察到的风险厌恶方面的差距。本文利用相对净效用的概念来解决圣彼得堡悖论。由于净效用概念能够解释行为经济学和圣彼得堡悖论,它被认为是处理效用的普遍方法。本文展示了净效用价值概念的信息含量如何使我们能够捕捉决策可能成就的影响的更广泛的背景。讨论了效用函数为避免悖论而必须符合的必要条件。结合这些必要条件,我们可以定义经济决策评价中的无差别定理,并提出相对净效用和净效用极性在价值理性决策过程中的作用。
---
英文标题:
《Relative Net Utility and the Saint Petersburg Paradox》
---
作者:
Daniel Muller, Tshilidzi Marwala
---
最新提交年份:
2020
---
分类信息:
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
The famous Saint Petersburg Paradox (St. Petersburg Paradox) shows that the theory of expected value does not capture the real-world economics of decision-making problems. Over the years, many economic theories were developed to resolve the paradox and explain gaps in the economic value theory in the evaluation of economic decisions, the subjective utility of the expected outcomes, and risk aversion as observed in the game of the St. Petersburg Paradox. In this paper, we use the concept of the relative net utility to resolve the St. Petersburg Paradox. Because the net utility concept is able to explain both behavioral economics and the St. Petersburg Paradox, it is deemed to be a universal approach to handling utility. This paper shows how the information content of the notion of net utility value allows us to capture a broader context of the impact of a decision's possible achievements. It discusses the necessary conditions that the utility function has to conform to avoid the paradox. Combining these necessary conditions allows us to define the theorem of indifference in the evaluation of economic decisions and to present the role of the relative net utility and net utility polarity in a value rational decision-making process.
---
PDF链接:
https://arxiv.org/pdf/1910.09544


雷达卡



京公网安备 11010802022788号







