摘要翻译:
给定一个系统的若干输入(例如,表征刺激的自变量)和若干随机非独立输出(例如,描述反应的不同方面的随机变量)的集合,对于每一个输出,人们如何确定它受哪一个输入的影响?该问题的应用范围从建模成对比较到重建心理加工结构到联合测试。通过联合分布判据给出了给定的选择性影响模式的充要条件,根据该判据,“什么影响什么”的问题等价于某组随机变量存在联合分布的问题。对于具有有限组值的输入和输出,这一准则转化为对某个线性方程组和不等式的一致性的检验(线性可行性检验),可以用线性规划的方法进行。联合分布准则还导致了一个元理论原理,用于产生选择性影响图的一大类必要条件(检验)。其中一类是距离型检验,它是基于联合分布随机变量上的某些函数满足三角不等式的观察。
---
英文标题:
《Selectivity in Probabilistic Causality: Drawing Arrows from Inputs to
Stochastic Outputs》
---
作者:
Ehtibar N. Dzhafarov and Janne V. Kujala
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
---
英文摘要:
Given a set of several inputs into a system (e.g., independent variables characterizing stimuli) and a set of several stochastically non-independent outputs (e.g., random variables describing different aspects of responses), how can one determine, for each of the outputs, which of the inputs it is influenced by? The problem has applications ranging from modeling pairwise comparisons to reconstructing mental processing architectures to conjoint testing. A necessary and sufficient condition for a given pattern of selective influences is provided by the Joint Distribution Criterion, according to which the problem of "what influences what" is equivalent to that of the existence of a joint distribution for a certain set of random variables. For inputs and outputs with finite sets of values this criterion translates into a test of consistency of a certain system of linear equations and inequalities (Linear Feasibility Test) which can be performed by means of linear programming. The Joint Distribution Criterion also leads to a metatheoretical principle for generating a broad class of necessary conditions (tests) for diagrams of selective influences. Among them is the class of distance-type tests based on the observation that certain functionals on jointly distributed random variables satisfy triangle inequality.
---
PDF链接:
https://arxiv.org/pdf/1108.3074


雷达卡



京公网安备 11010802022788号







