摘要翻译:
利用仿射Grassmannian自然产生的矩阵共轭类和(非Slodowy的)横切片构造了A型Nakajima的颤振变体。在完全通用的情况下,颤动变种被嵌入到Beilinson-Drinfeld Grassmannians a型中。我们的构造提供了Nakajima的颤动变种的压缩和仿射Grassmannian分解为颤动变种的不相交并。作为一个应用,我们提供了一个几何版本的斜对称$(GL(m),GL(n))$对偶。
---
英文标题:
《Quiver varieties and Beilinson-Drinfeld Grassmannians of type A》
---
作者:
Ivan Mirkovi\'c, Maxim Vybornov
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We construct Nakajima's quiver varieties of type A in terms of conjugacy classes of matrices and (non-Slodowy's) transverse slices naturally arising from affine Grassmannians. In full generality quiver varieties are embedded into Beilinson-Drinfeld Grassmannians of type A. Our construction provides a compactification of Nakajima's quiver varieties and a decomposition of an affine Grassmannian into a disjoint union of quiver varieties. As an application we provide a geometric version of skew and symmetric $(GL(m), GL(n))$ duality.
---
PDF链接:
https://arxiv.org/pdf/0712.4160


雷达卡



京公网安备 11010802022788号







