摘要翻译:
我们计算了定义在有限域上的镜面特征束的Frobenius迹函数。由Shoji引入的有限域上一般线性群的特征值和对称函数的反物Hall-Littlewood基中乘法的结构常数给出了答案。
---
英文标题:
《Mirabolic affine Grassmannian and character sheaves》
---
作者:
Michael Finkelberg, Victor Ginzburg, Roman Travkin
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We compute the Frobenius trace functions of mirabolic character sheaves defined over a finite field. The answer is given in terms of the character values of general linear groups over the finite field, and the structure constants of multiplication in the mirabolic Hall-Littlewood basis of symmetric functions, introduced by Shoji.
---
PDF链接:
https://arxiv.org/pdf/0802.1652


雷达卡



京公网安备 11010802022788号







