摘要翻译:
设$gr(k,n)$为$\pn$中射影$k$-平面的Grassmann类的PL\\Ucker嵌入。对于射影簇$X$,设$\sigma_s(X)$表示它的$s-1$割线平面的簇。更准确地说,$\sigma_s(X)$表示$s$-位于$X$上的点元组的线性跨度并集的Zariski闭包。我们展示了两个函数$s_0(n)\le s_1(n)$,使得$\sigma_s(Gr(2,n))$在$n\geq9$和$s\le s_0(n)$或$s_1(n)\le s$时具有预期的维数。$S_0(n)$和$S_1(n)$都渐近于$\frac{n^2}{18}$。这渐近地导出了$\wedge^{3}1pt{\mathbb C}^{n+1}$元素的典型秩。最后,我们将所有有缺陷的$\sigma_s(Gr(k,n))$归类为$s\le6$并给出了每个有缺陷情况下的几何参数。
---
英文标题:
《Non-Defectivity of Grassmannians of planes》
---
作者:
Hirotachi Abo, Giorgio Ottaviani, Chris Peterson
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Let $Gr(k,n)$ be the Pl\"ucker embedding of the Grassmann variety of projective $k$-planes in $\P n$. For a projective variety $X$, let $\sigma_s(X)$ denote the variety of its $s-1$ secant planes. More precisely, $\sigma_s(X)$ denotes the Zariski closure of the union of linear spans of $s$-tuples of points lying on $X$. We exhibit two functions $s_0(n)\le s_1(n)$ such that $\sigma_s(Gr(2,n))$ has the expected dimension whenever $n\geq 9$ and either $s\le s_0(n)$ or $s_1(n)\le s$. Both $s_0(n)$ and $s_1(n)$ are asymptotic to $\frac{n^2}{18}$. This yields, asymptotically, the typical rank of an element of $\wedge^{3} 1pt {\mathbb C}^{n+1}$. Finally, we classify all defective $\sigma_s(Gr(k,n))$ for $s\le 6$ and provide geometric arguments underlying each defective case.
---
PDF链接:
https://arxiv.org/pdf/0901.2601


雷达卡



京公网安备 11010802022788号







