摘要翻译:
随机领域往往涉及风险规避决策者。虽然最近的工作集中在如何使用风险度量在马尔可夫决策过程中建模风险,但它没有解决解决大的风险厌恶公式的问题。本文提出并分析了一种求解具有连续-离散混合状态空间和连续动作空间的大型风险规避MDPs的新方法。该方法利用MDP的线性结构迭代改进值函数的界。我们在一个投资组合优化问题上证明了该方法的实用性和性质。
---
英文标题:
《An Approximate Solution Method for Large Risk-Averse Markov Decision
Processes》
---
作者:
Marek Petrik, Dharmashankar Subramanian
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Science and Game Theory 计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
---
英文摘要:
Stochastic domains often involve risk-averse decision makers. While recent work has focused on how to model risk in Markov decision processes using risk measures, it has not addressed the problem of solving large risk-averse formulations. In this paper, we propose and analyze a new method for solving large risk-averse MDPs with hybrid continuous-discrete state spaces and continuous action spaces. The proposed method iteratively improves a bound on the value function using a linearity structure of the MDP. We demonstrate the utility and properties of the method on a portfolio optimization problem.
---
PDF链接:
https://arxiv.org/pdf/1210.4901


雷达卡



京公网安备 11010802022788号







