摘要翻译:
Guillemin,Jeffrey和Sjamaar的辛内爆构造与紧群K在辛流形X上的哈密顿作用有关。当X是复射影簇,K线性作用于X时,这种构造与K的复化G的极大幂次群U作用于X的几何不变理论(GIT)密切相关。本文的目的是推广辛内爆,给出线性作用于射影簇X的复还原群G的任意抛物子群P的幂次根U关于类GIT商的辛构造。
---
英文标题:
《Symplectic implosion and non-reductive quotients》
---
作者:
Frances Kirwan
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
---
英文摘要:
The symplectic implosion construction of Guillemin, Jeffrey and Sjamaar associates to a Hamiltonian action of a compact group K on a symplectic manifold X its 'imploded cross section'. When X is a complex projective variety and K acts linearly on X, this construction is closely related to geometric invariant theory (GIT) for the action on X of a maximal unipotent subgroup U of the complexification G of K. The aim of this paper is to generalise symplectic implosion to give a symplectic construction for GIT-like quotients by unipotent radicals U of arbitrary parabolic subgroups P of the complex reductive group G acting linearly on the projective variety X.
---
PDF链接:
https://arxiv.org/pdf/0812.2782


雷达卡



京公网安备 11010802022788号







